• Featured post

C# Async ops

El nucleo de la programacion asincrona son los objetos Task y Task<T>. Son compatibles con las palabras clave async y await.

Primero hay que reconocer si el codigo se usa para trabajos enlazados a I/O o si son CPU intensivos.

  • Si el codigo espera algo como una BBDD o una response de un servidor, es codigo I/O. En este caso hay que usar async y await
  • Si el codigo realiza un calculo costoso, es CPU intensivo. Use await para esperar una operacion que se ha comenzado en background con Task.run

Async / Await (Operaciones I/O)

La palabra clave importante aqui es await. Lo que hace es suspender la ejecucion del metodo actual y devolver el control hasta que está lista para seguir.

public async Task Main()
{
	string contenido = await LeerPaginaWebAsync("http://example.com");
}

private async Task<string> LeerPaginaWebAsync(string url)
{
	using (HttpClient client = new HttpClient())
	{
		return await client.GetStringAsync(url);
	}
}

Read More

C# Pattern matching

Overview of scenarios where you can use pattern matching. These techniques can improve the readability and correctness of your code.

Reduce nested if-else

We have the following class

IAnimal animal = new Cat("Fred", 12);

then with a single if we can determine if the animal is more than 10 years old and has the name of fred

if(animal is Cat { CatYears: >10, Name: "Fred"} myCat)
{
	Console.WriteLine($"{myCat.CatYears} old");
}

Null checks

One of the most common scenarios.

string? message = MaybeString();
if(message is not null) 
{
	Console.WriteLine(message);
}

Compare discrete values

You can test a varaible to find a match on specific values

public State PerformOperation(string command) =>
	command switch
	{
		"SystemTest" => RunDiagnostics(),
		"Start" => StartSystem(),
		"Stop" => StopSystem(),
		_ => throw new ArgumentException("Invalid string value", nameof(command)),
	};

_ is the discard pattern that matches all values. It handles any error conditions where the value doesn’t match one of the defined values.

Read More

C# Expression bodied members

Expression body definitions let you provide a member’s implementation in a concise, readable form.

Methods

Expression-bodied method consists of a single expression that returns:

  • a value whose type matches the return value
  • or performs an operation for void methods
public class Person(string firstName, string lastName)
{
	public override string ToString() => $"{firstName} {lastName}".Trim();
	public void DisplayName() => Console.WriteLine(ToString());
}

Read-only properties

You can use them to implement read-only property.

public class Location(string locationName)
{
	public string Name => loactionName;
}

Reference(s)

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members

C# Collections' index and range operators

Index operator ^1

The index operator is used to reach the last positions of an array or list.

before

List<int> arr = [0, 1, 2, 3, 4, 5];
if(arr[arr.Count-1] == 5)
	Console.WriteLine("match!"); // prints

same but using index operator

List<int> arr = [0, 1, 2, 3, 4, 5];
if(arr[^1] == 5)
	Console.WriteLine("match!"); // prints

we can use it to reach any position starting from the back

List<int> arr = [0, 1, 2, 3, 4, 5];
if(arr[^2] == 4)
	Console.WriteLine("match!"); // prints

Read More

Deconstruction in ASP.NET Core

Desconstructors allows us to extract in a single expression, properties of an object or elements of a tuple, and assign them to distinct variables.

record and record struct automatically provide a Deconstruct method.

Classes

before deconstruction we had to manually extract each variable

var pat = new Person() { Name = "Patrick", BirdDate = new DateOnly(1999, 1, 18)};
var name = pat.Name;
var birthDate = pat.BirthDate;
Console.WriteLine($"Name: {name}, birthdate: {birthDate}");

class Person

public class Person
{
	public string Name { get; set; }
	public string Location { get; set; }
}

with deconstruction

var pat = new Person() { Name = "Patrick", BirdDate = new DateOnly(1999, 1, 18)};
var (name, birthDate) = pat;
Console.WriteLine($"Name: {name}, birthdate: {birthDate}");

class Person with Deconstructor

public class Person
{
	public string Name { get; set; }
	public string Location { get; set; }
	
	public void Deconstruct(out string name, out string location) 
	{
		name = Name;
		location = Location;
	}
}

if you don’t want all properties, just discard some using the discard character _

var pat = new Person() { Name = "Patrick", BirdDate = new DateOnly(1999, 1, 18)};
var (name, _) = pat;
Console.WriteLine($"Name: {name}");

Tuples

The same applies to tuples

// tuple creation
(string name, string location) person = ("mario", "spain");
// deconstructor
var (name, location) = person;

Reference(s)

https://blog.ndepend.com/deconstruction-in-c/

Cache in ASP.NET Core

ASP.NET Core offers several cache types. I’m going to explore here IMemoryCache which stores data in the memory of the web server. It’s simple but not suitable for distributed scenarios.

first of all we need to register the services

builder.Services.AddMemoryCache();

here’s how you can use it

public service(IMemoryCache cache, AppDbContext context)
{
	public Person GetPerson(string id)
	{
		if(!cache.TryGetValue(id, out Person person))
		{
			person = context.Persons.Find(id);

			var cacheEntryOptions = new MemoryCacheEntryOptions()
				.SetAbsoluteExpiration(TimeSpan.FromMinutes(10))
				.SetSlidingExpiration(TimeSpan.FromMinutes(2));

			cache.Set(id, person, cacheEntryOptions);
		}

		return person;
	}
}

Reference(s)

https://www.milanjovanovic.tech/blog/caching-in-aspnetcore-improving-application-performance

Dependency injection in .NET Core

Dependency injection is native-available in .NET Core

DI implementation

interface we want to inject

public interface IDateTime
{
	DateTime Now { get; }
}

interface’s implementation

public class SystemDateTime : IDateTime
{
	public DateTime Now
	{
		get { return DateTime.Now; }
	}
}

service we inject into

public class HomeController : Controller
{
	private readonly IDateTime _dateTime;

	public HomeController(IDateTime dateTime)
	{
		_dateTime = dateTime;
	}

	public IActionResult Index()
	{
		var serverTime = _dateTime.Now;
		return Ok(serverTime);
	}
}

Read More

C# Anonymous types objects

Anonymous types provide an easy way to encapsulate different properties in a single object. Unlike properties in a class, the properties of anonymous type objects are read-only.

Declare and use anon type objects

declaration

var loginCredentials = new { Username = "suresh", Password = "******" };
Console.WriteLine($"Username {loginCredentials.Username.ToString()}");
Console.WriteLine($"Password {loginCredentials.Password.ToString()}");

After assigning values to the Username and Password properties, they cannot be altered *(they’re readonly).

Anon objects in LINQ

Usually, anon data types are used in the select clause to return a specific subset of properties for each object in the collection.

we have the employee class

public class Employee
{
	public int ID { get; set; }
	public string Name { get; set; }
	public int Age { get; set; }
	public string Address { get; set; }
}
List<Employee> employees = // whatever ...
// we convert an Employee into an anon object type with a subset of properties
var employeeDetails = from emp in employees
	select new { Id = emp.ID, Name = emp.Name };

Reference(s)

https://www.syncfusion.com/blogs/post/understanding-csharp-anonymous-types

C# Collections

List vs ArrayList

Don’t use ArrayList. Use List<T> instead. ArrayList comes from times when C# didn’t have generics and it’s not the same ArrayList we have in Java.

DON’T

ArrayList array = new ArrayList();
array.Add(1);
array.Add("Pony"); // Later error at runtime if you try to operate with numbers.

do

List<int> list = [];
list.Add(1);
list.Add("Pony"); // Compilation error. 

retrieve data

List<string> list = [ "yes", "no"];
var firstItem = list[0];

Tuples

Tuples help us manipulate data sets easily without having to define a new class with custom properties.

// simple tuple
(int, string) employee = (23, "Yohannes");
Console.WriteLine($"{employee.Item2} is {employee.Item1} years old");

// tuple with named parameters
(int Age, string Name) employee2 = (29, "Ramon");
Console.WriteLine($"{employee2.Name} is {employee2.Age} years old");

// nested tuples
var employees = ((23, "Yohannes"), (29, "Ramon"));
Console.WriteLine(employees.Item1); // (23, "Yohannes")
Console.WriteLine(employees.Item1.Item1); // 23

Read More

C# 12 primary constructors

A concise syntax to declare constructors whose params are available anywhere in the body.

Primary constructors is an easier way to create a constructor for your class or struct, by eliminating the need for explicit declarations of private fields and bodies that only assign param values.

They are great when you just need to do simple initialization of fields and for dependency injection.

Code example without primary constructors

public class BookDefault
{
	public int Id { get; }
	public string Title { get; }
	public int Pages { get; set; }
	private readonly List<decimal> ratings = new List<decimal>();
	public decimal? AverageRating => ratings.Any() ? ratings.Average() : 0m;

	public BookDefault(int id, string title, IEnumerable<decimal>? rating = null)
	{
		ArgumentException.ThrowIfNullOrEmpty(id);
		ArgumentException.ThrowIfNullOrEmpty(title);
		
		Id = id;
		Title = title;
		if(rating?.Any() == true)
		{
			ratings.AddRange(rating);
		}
	}
}

Code example using primary constructors

public class Book(int id, string title, IEnumerable<decimal> ratings)
{
	public int Id => id;
	public string Title => title.Trim();
	public int Pages { get; set; }
	public decimal AverageRating => ratings.Any() ? ratings.Average() : 0m;
}

another example

public class Person(string firstName, string lastName)
{
	public string FirstName { get; } = firstName;
	public string LastName { get; } = lastName;
}

Read More

C# 12 collection expressions

Collection expressions try to unify all syntaxes for initializing different collections. With them you can use the same syntax to express collections in a consistent way.

They replace all of this:

// all these versions are equivalent - the compiler generates identical code for each version
var numbers1 = new int[3] {1, 2, 3};
var numbers2 = new int[] {1, 2, 3};
var numbers3 = new[] {1, 2, 3};
int[] numbers4 = {1, 2, 3};

Using the new collection expressions (they cannot be used with var. You must declare the type)

// create an array
int[] intArray = [1, 2, 3, 4, 5];
// create empty array
int[] emptyArray = [];
// create a list
List<char> charList = ['D', 'a', 'v', 'i', 'd'];
// create a 2D list
List<int> int2dList = [[1, 2, 3], [4, 5, 6,], [7, 8, 9]];

how to flatten collections

int[] row0 = [1, 2, 3];
int[] row1 = [4, 5, 6];
int[] flattenCollection = [.. row0, 100, .. row1];
foreach(element in flattenCollection)
{
	Console.Write($"{element}, ");
}
// 1, 2, 3, 100, 4, 5, 6,

Reference(s)

https://devblogs.microsoft.com/dotnet/refactor-your-code-with-collection-expressions/
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12#collection-expressions